Dosimetric effects near implanted vascular access ports: an examination of external photon beam calculation.
نویسندگان
چکیده
Vascular access ports are used widely in the administering of drugs for radiation oncology patients. Their dosimetric effect on radiation therapy delivery in photon beams has not been rigorously established. In this work the effects on external beam fields when any of a variety of vascular access ports is included in the path of a high energy beam are studied. This medical physics study specifically identifies side-scatter and back-scatter consequences as well as attenuation effects. The study was divided into two parts: Firstly, a total of 18 ports underwent extended HU range CT scanning followed by 3-D computer treatment planning, where independent homogeneity and heterogeneity plans were created for photon beams of energy 6 MV and 18 MV using a Pencil Beam Convolution (PBC) algorithm. Dose points were analyzed at locations all around each device. A total of 1,440 points were reviewed in this section of the study. Secondly, a mock-up of the largest vascular access port was created in the treatment planning workspace for further investigation with alternative treatment planning algorithms. Plans were generated identically to the above and compared to the results of dose computation between the Pencil Beam Convolution algorithm, the Analytical Anisotropic Algorithm (AAA), and the EGSnrc Monte Carlo algorithm with user code DOSRZnrc (MC). A total of 300 points were reviewed in this part of the study. It was conclusive that ports with more bulky construction and those with partial metal composition create the largest changes. Similar effects are seen for similar port configurations. Considerable differences between the PBC and AAA in comparison to MC are noted and discussed. By thorough examination of planning system results, the presented vascular access ports may now be ranked according to the greatest amount of change exhibited within a treatment planning system. Effects of backscatter, lateral scatter and attenuation are up to 5.0%, 3.4% and 16.8% for 6 MV and 7.0%, 7.7% and 7.2% for 18 MV respectively.
منابع مشابه
Dosimetric effects near implanted vascular access ports: an examination of external photon beam dose calculations
an examination of external photon beam dose calculations Michael S. Gossman,1,a Jan P. Seuntjens,2 Monica F. Serban,3 Kelly J. Christian,4 Raymond C. Lawson,1 Mary A. Robertson,1 Jeffrey P. Lopez1 and Terry E. Justice1 Tri-State Regional Cancer Center,1 Ashland, Kentucky 41101 USA; McGill University, Montreal General Hospital,2 Medical Physics Unit, Montreal QC H3G 1A4 Canada; Maisonneuve-Rosem...
متن کاملA Review on the Use of Grid-Based Boltzmann Equation Solvers for Dose Calculation in External Photon Beam Treatment Planning
Deterministic linear Boltzmann transport equation (D-LBTE) solvers have recently been developed, and one of the latest available software codes, Acuros XB, has been implemented in a commercial treatment planning system for radiotherapy photon beam dose calculation. One of the major limitations of most commercially available model-based algorithms for photon dose calculation is the ability to ac...
متن کاملHow to Care for Implanted Ports
Implantable ports are used for intravenous infusion therapy and play an important role in management of oncology patients. These ports are best suited for patients requiring long-term therapy (>4 weeks). Implanted ports provide reliable venous access protect peripheral access increase patients’ comfort through reducing repeated and difficult vein punctures allow for safe and comfortable admi...
متن کاملQuantification the dosimetric parameters of asymmetric physical wedged-6MV photon beam
Introduction: Physical wedge as a useful tool has been utilized in radiotherapy to modify photon beam shape and intensity such that it distributes dose uniformly in tumor site and reduces hot points. Since during Linac commissioning dosimetric parameters like output factors and lateral dose profiles are measured only for symmetric open and wedged fields, so calculation the par...
متن کاملMonte Carlo Study of Unflattened Photon Beams Shaped by Multileaf Collimator
Introduction: This study investigates basic dosimetric properties of unflattened 6 MV photon beam shaped by multileaf collimator and compares them with those of flattened beams.Materials and Methods: Monte Carlo simulation model using BEAM code was developed for a 6MV photon beam based on Varian Clinic 600 unique performance linac operated with and without a flattening filter in beam line. Dosi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of applied clinical medical physics
دوره 10 3 شماره
صفحات -
تاریخ انتشار 2009